Breadcrumb Navigation


Lars Kunz

Metabolic cost of neuronal activity

Development of ATP consumption and metabolic marker levels in neurones of the medial superior olive (Mongolian gerbil)Our major research focus is on the correlation of cellular metabolism (energy production and consumption) and electrical activity in neurones. As the function of the brain is associated with high energy and oxygen consumption, we are interested in the metabolic demands of specialised neuronal properties such as high firing rates or temporal precise integration. We are studying these topics by a combined experimental and theoretical approach and especially trying to answer the question whether neuronal metabolism and its optimisation might impose limitations upon neural circuits. We investigate cellular aspects of this topic in the auditory brainstem of Mongolian gerbils (Meriones unguiculatus), an apt model organism for human hearing, and in semi-intact amphibian brain preparations. In the brain of amphibian tad-poles we can study neuroenergetics in multi-synaptic circuits under in vivo-like conditions.

Collaborators: Martin Stemmler, Hans Straka (LMU Munich)

Establishing optogenetic & viral tools in the Mongolian gerbilExpression of AAV-introduced mCherry (red) and labelling of neurones (MAP2; green) as well as cell nuclei (DAPI; blue) in the medial nucleus of the trapezoid body (Mongolian gerbil)

Expression of AAV-introduced EYFP (green) and labelling of neurones (MAP2; red) as well as glial cells (S100beta; blue) in the inferior colliculus of the (Mongolian gerbil)To allow studying neurophysiology in auditory brainstem nuclei under optimal conditions, we are developing and establishing optogenetic tools for the Mongolian gerbil. This powerful technique is successfully used in other experimental animals in vitro and in vivo. However, due to the lack of genetic information about our model animal, the adaptation of this method to the gerbil is rather challenging.


Collaborators: Martin Biel, Stylianos Michalakis, Rainer Uhl (LMU Munich)

The endocannabinoid system in development & modulation of neuronal function

Depolarisation-induced suppression of inhibition and expression of endocannabinoid synthesising enzymes (DAGL, green; inset) in neurones of the medial superior olive (Mongolian gerbil; MAP2, green; DAPI, blue)We are interested in the role of the endocannabinoid system in auditory neurones on different time scales ranging from short term adaptation to functional and morphological development. In auditory brainstem nuclei, retrograde endocannabinoid signalling is involved in activity-dependent regulation of the strength of both excitatory (glutamatergic) and inhibitory (glycinergic) synapses.

Electrophysiological characterisation of astrocytes proliferating in acute brain injury

In a recently started collaboration we are characterising biophysical properties and functionally relevant specialisation of juxtavascular astrocytes. These glial cells have been shown to selectively proliferate in response to acute brain injury.

Collaborators: Magdalena Götz (LMU Munich & HelmholtzZentrum München)

Function of ion channels & neurotransmitters in the mammalian gonads

The function of ion channels and neurotransmitters in non-excitable cells such as endocrine cells in the human ovary are only scarcely understood, but are of great interest in the context of human fertility and in vitro fertilisation. We are studying the role of these players in the human gonads by a combined experimental and computational modelling approach. In this context we are also interested in reactive oxygen species as both noxious and signalling molecules.

Collaborators: Artur Mayerhofer (LMU Munich)


  • Whole-cell patch-clamp recordings in acute brain slices
  • Whole-cell patch-clamp recordings in cultured human ovarian cells
  • Live fluorescence imaging of Ca2+, ROS & metabolic intermediates (NAD, FAD)
  • Monitoring of tissue oxygenation
  • Immunohistochemistry
  • Computational & mathematical modelling of neuronal metabolism and neurotransmitter signalling

People in the Laboratory

  • Barbara Trattner
  • Stefan Keplinger
  • Stefanie Götz
  • Sonja Brosel